3.4.10 \(\int \frac {(b \tan (e+f x))^{5/2}}{\sqrt {d \sec (e+f x)}} \, dx\) [310]

Optimal. Leaf size=88 \[ -\frac {3 b^2 E\left (\left .\frac {1}{2} \left (e-\frac {\pi }{2}+f x\right )\right |2\right ) \sqrt {b \tan (e+f x)}}{f \sqrt {d \sec (e+f x)} \sqrt {\sin (e+f x)}}+\frac {b (b \tan (e+f x))^{3/2}}{f \sqrt {d \sec (e+f x)}} \]

[Out]

3*b^2*(sin(1/2*e+1/4*Pi+1/2*f*x)^2)^(1/2)/sin(1/2*e+1/4*Pi+1/2*f*x)*EllipticE(cos(1/2*e+1/4*Pi+1/2*f*x),2^(1/2
))*(b*tan(f*x+e))^(1/2)/f/(d*sec(f*x+e))^(1/2)/sin(f*x+e)^(1/2)+b*(b*tan(f*x+e))^(3/2)/f/(d*sec(f*x+e))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.08, antiderivative size = 88, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.160, Rules used = {2691, 2696, 2721, 2719} \begin {gather*} \frac {b (b \tan (e+f x))^{3/2}}{f \sqrt {d \sec (e+f x)}}-\frac {3 b^2 E\left (\left .\frac {1}{2} \left (e+f x-\frac {\pi }{2}\right )\right |2\right ) \sqrt {b \tan (e+f x)}}{f \sqrt {\sin (e+f x)} \sqrt {d \sec (e+f x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(b*Tan[e + f*x])^(5/2)/Sqrt[d*Sec[e + f*x]],x]

[Out]

(-3*b^2*EllipticE[(e - Pi/2 + f*x)/2, 2]*Sqrt[b*Tan[e + f*x]])/(f*Sqrt[d*Sec[e + f*x]]*Sqrt[Sin[e + f*x]]) + (
b*(b*Tan[e + f*x])^(3/2))/(f*Sqrt[d*Sec[e + f*x]])

Rule 2691

Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(a*Sec[e +
 f*x])^m*((b*Tan[e + f*x])^(n - 1)/(f*(m + n - 1))), x] - Dist[b^2*((n - 1)/(m + n - 1)), Int[(a*Sec[e + f*x])
^m*(b*Tan[e + f*x])^(n - 2), x], x] /; FreeQ[{a, b, e, f, m}, x] && GtQ[n, 1] && NeQ[m + n - 1, 0] && Integers
Q[2*m, 2*n]

Rule 2696

Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[a^(m + n)*((b
*Tan[e + f*x])^n/((a*Sec[e + f*x])^n*(b*Sin[e + f*x])^n)), Int[(b*Sin[e + f*x])^n/Cos[e + f*x]^(m + n), x], x]
 /; FreeQ[{a, b, e, f, m, n}, x] && IntegerQ[n + 1/2] && IntegerQ[m + 1/2]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2721

Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*Sin[c + d*x])^n/Sin[c + d*x]^n, Int[Sin[c + d*x]
^n, x], x] /; FreeQ[{b, c, d}, x] && LtQ[-1, n, 1] && IntegerQ[2*n]

Rubi steps

\begin {align*} \int \frac {(b \tan (e+f x))^{5/2}}{\sqrt {d \sec (e+f x)}} \, dx &=\frac {b (b \tan (e+f x))^{3/2}}{f \sqrt {d \sec (e+f x)}}-\frac {1}{2} \left (3 b^2\right ) \int \frac {\sqrt {b \tan (e+f x)}}{\sqrt {d \sec (e+f x)}} \, dx\\ &=\frac {b (b \tan (e+f x))^{3/2}}{f \sqrt {d \sec (e+f x)}}-\frac {\left (3 b^2 \sqrt {b \tan (e+f x)}\right ) \int \sqrt {b \sin (e+f x)} \, dx}{2 \sqrt {d \sec (e+f x)} \sqrt {b \sin (e+f x)}}\\ &=\frac {b (b \tan (e+f x))^{3/2}}{f \sqrt {d \sec (e+f x)}}-\frac {\left (3 b^2 \sqrt {b \tan (e+f x)}\right ) \int \sqrt {\sin (e+f x)} \, dx}{2 \sqrt {d \sec (e+f x)} \sqrt {\sin (e+f x)}}\\ &=-\frac {3 b^2 E\left (\left .\frac {1}{2} \left (e-\frac {\pi }{2}+f x\right )\right |2\right ) \sqrt {b \tan (e+f x)}}{f \sqrt {d \sec (e+f x)} \sqrt {\sin (e+f x)}}+\frac {b (b \tan (e+f x))^{3/2}}{f \sqrt {d \sec (e+f x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 10.83, size = 74, normalized size = 0.84 \begin {gather*} \frac {b^3 \left (\tan ^2(e+f x)+3 \, _2F_1\left (-\frac {1}{4},\frac {1}{4};\frac {3}{4};\sec ^2(e+f x)\right ) \sqrt [4]{-\tan ^2(e+f x)}\right )}{f \sqrt {d \sec (e+f x)} \sqrt {b \tan (e+f x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(b*Tan[e + f*x])^(5/2)/Sqrt[d*Sec[e + f*x]],x]

[Out]

(b^3*(Tan[e + f*x]^2 + 3*Hypergeometric2F1[-1/4, 1/4, 3/4, Sec[e + f*x]^2]*(-Tan[e + f*x]^2)^(1/4)))/(f*Sqrt[d
*Sec[e + f*x]]*Sqrt[b*Tan[e + f*x]])

________________________________________________________________________________________

Maple [C] Result contains complex when optimal does not.
time = 0.39, size = 585, normalized size = 6.65

method result size
default \(\frac {\left (6 \sqrt {-\frac {i \left (\cos \left (f x +e \right )-1\right )}{\sin \left (f x +e \right )}}\, \sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \sqrt {-\frac {i \cos \left (f x +e \right )-i-\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \EllipticE \left (\sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}, \frac {\sqrt {2}}{2}\right ) \left (\cos ^{2}\left (f x +e \right )\right )-3 \sqrt {-\frac {i \left (\cos \left (f x +e \right )-1\right )}{\sin \left (f x +e \right )}}\, \sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \sqrt {-\frac {i \cos \left (f x +e \right )-i-\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \EllipticF \left (\sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}, \frac {\sqrt {2}}{2}\right ) \left (\cos ^{2}\left (f x +e \right )\right )+6 \sqrt {-\frac {i \left (\cos \left (f x +e \right )-1\right )}{\sin \left (f x +e \right )}}\, \sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \sqrt {-\frac {i \cos \left (f x +e \right )-i-\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \EllipticE \left (\sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}, \frac {\sqrt {2}}{2}\right ) \cos \left (f x +e \right )-3 \sqrt {-\frac {i \left (\cos \left (f x +e \right )-1\right )}{\sin \left (f x +e \right )}}\, \sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \sqrt {-\frac {i \cos \left (f x +e \right )-i-\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \EllipticF \left (\sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}, \frac {\sqrt {2}}{2}\right ) \cos \left (f x +e \right )+2 \left (\cos ^{2}\left (f x +e \right )\right ) \sqrt {2}-3 \cos \left (f x +e \right ) \sqrt {2}+\sqrt {2}\right ) \cos \left (f x +e \right ) \left (\frac {b \sin \left (f x +e \right )}{\cos \left (f x +e \right )}\right )^{\frac {5}{2}} \sqrt {2}}{2 f \sqrt {\frac {d}{\cos \left (f x +e \right )}}\, \sin \left (f x +e \right )^{3}}\) \(585\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*tan(f*x+e))^(5/2)/(d*sec(f*x+e))^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/2/f*(6*(-I*(cos(f*x+e)-1)/sin(f*x+e))^(1/2)*((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2)*(-(I*cos(f*x+e)-I
-sin(f*x+e))/sin(f*x+e))^(1/2)*EllipticE(((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2),1/2*2^(1/2))*cos(f*x+e
)^2-3*(-I*(cos(f*x+e)-1)/sin(f*x+e))^(1/2)*((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2)*(-(I*cos(f*x+e)-I-si
n(f*x+e))/sin(f*x+e))^(1/2)*EllipticF(((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2),1/2*2^(1/2))*cos(f*x+e)^2
+6*(-I*(cos(f*x+e)-1)/sin(f*x+e))^(1/2)*((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2)*(-(I*cos(f*x+e)-I-sin(f
*x+e))/sin(f*x+e))^(1/2)*EllipticE(((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2),1/2*2^(1/2))*cos(f*x+e)-3*(-
I*(cos(f*x+e)-1)/sin(f*x+e))^(1/2)*((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2)*(-(I*cos(f*x+e)-I-sin(f*x+e)
)/sin(f*x+e))^(1/2)*EllipticF(((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2),1/2*2^(1/2))*cos(f*x+e)+2*cos(f*x
+e)^2*2^(1/2)-3*cos(f*x+e)*2^(1/2)+2^(1/2))*cos(f*x+e)*(b*sin(f*x+e)/cos(f*x+e))^(5/2)/(d/cos(f*x+e))^(1/2)/si
n(f*x+e)^3*2^(1/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*tan(f*x+e))^(5/2)/(d*sec(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate((b*tan(f*x + e))^(5/2)/sqrt(d*sec(f*x + e)), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.11, size = 122, normalized size = 1.39 \begin {gather*} \frac {2 \, b^{2} \sqrt {\frac {b \sin \left (f x + e\right )}{\cos \left (f x + e\right )}} \sqrt {\frac {d}{\cos \left (f x + e\right )}} \sin \left (f x + e\right ) - 3 i \, \sqrt {-2 i \, b d} b^{2} {\rm weierstrassZeta}\left (4, 0, {\rm weierstrassPInverse}\left (4, 0, \cos \left (f x + e\right ) + i \, \sin \left (f x + e\right )\right )\right ) + 3 i \, \sqrt {2 i \, b d} b^{2} {\rm weierstrassZeta}\left (4, 0, {\rm weierstrassPInverse}\left (4, 0, \cos \left (f x + e\right ) - i \, \sin \left (f x + e\right )\right )\right )}{2 \, d f} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*tan(f*x+e))^(5/2)/(d*sec(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

1/2*(2*b^2*sqrt(b*sin(f*x + e)/cos(f*x + e))*sqrt(d/cos(f*x + e))*sin(f*x + e) - 3*I*sqrt(-2*I*b*d)*b^2*weiers
trassZeta(4, 0, weierstrassPInverse(4, 0, cos(f*x + e) + I*sin(f*x + e))) + 3*I*sqrt(2*I*b*d)*b^2*weierstrassZ
eta(4, 0, weierstrassPInverse(4, 0, cos(f*x + e) - I*sin(f*x + e))))/(d*f)

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*tan(f*x+e))**(5/2)/(d*sec(f*x+e))**(1/2),x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 4371 deep

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*tan(f*x+e))^(5/2)/(d*sec(f*x+e))^(1/2),x, algorithm="giac")

[Out]

integrate((b*tan(f*x + e))^(5/2)/sqrt(d*sec(f*x + e)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (b\,\mathrm {tan}\left (e+f\,x\right )\right )}^{5/2}}{\sqrt {\frac {d}{\cos \left (e+f\,x\right )}}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*tan(e + f*x))^(5/2)/(d/cos(e + f*x))^(1/2),x)

[Out]

int((b*tan(e + f*x))^(5/2)/(d/cos(e + f*x))^(1/2), x)

________________________________________________________________________________________